Biofuel production, study & characterisation from macro-algae (Azolla pinnata)

Authors

  • Porshia Sharma Institute for Innovative Learning and Research (IILR) Academy, Indore, India https://orcid.org/0000-0002-0881-2260
  • Puja Biswas Institute for Innovative Learning and Research (IILR) Academy, Indore, India
  • Satya Tamrakar Devi Ahilya University, Indore, India
  • Yogesh Choudhary Devi Ahilya University, Indore, India

DOI:

https://doi.org/10.14295/bjs.v2i3.289

Keywords:

Azolla pinnata, genus Azolla, biofuel, chlorophyll-a, trans-esterification

Abstract

The demands for energy and the scarcity in fossil fuel are constantly increasing. This has resulted in the search for sustainable, renewable, and low cost biofuel that has triggered the search for potential bioenergy crops. Aquatic plants that can grow rapidly with minimum resources and can produce biomass in bulk amounts are driving the attention of scientists and researchers throughout the world. The production of biofuels from such organic materials and waste components can result in developing of sustainable alternative that will not only be beneficial to the environment but also to public health. In this study, one such aquatic macro algae Azolla pinnata proved to be potential source for biofuel production. The evaluation of its growth was done and trans-esterification of Azolla pinnata lipid was carried out to produce biofuel. The species have a unique combination of physical, chemical and nutrients composition that makes it a boon to mankind. This macro algae was subjected to series of laboratory testing and evaluation for its characterization such as acid value test, trans-esterification, fatty acid methyl esters (FAMEs) test, gas chromatography which showed the feasibility of algal based biofuel. The comparison of properties of extracted biofuel (physicochemical) from Azollla pinnta was done with standardized ASTM D6751 values. The outcome of produced biofuel was very close to conventional fuel.

References

Bugs, L. C., & Cuperitini, P. M., (2018). Uso da biomassa de algas como biossorvente para remoção de metais pesados: uma revisão. Revista de Ciências Exatas Aplicadas e Tecnológicas da Universidade de Passo Fundo, 10(1), 53-67. https://doi.org/10.5335/ciatec.v10i1.7183 DOI: https://doi.org/10.5335/ciatec.v10i1.7183

Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101(9), 3097-3105. https://doi.org/10.1016/j.biortech.2009.12.026 DOI: https://doi.org/10.1016/j.biortech.2009.12.026

Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50(1), 0196-8904. https://doi.org/10.1016/j.enconman.2008.09.001 DOI: https://doi.org/10.1016/j.enconman.2008.09.001

Defanti, L. S., Siqueira, N. S., & Linhares, P. C. (2010). Produção de biocombustíveis a partir de algas fotossintetizantes. Revista de Divulgação do Projeto Universidade Petrobras e IF Fluminense, 1, 11-21.

Hardy, E. R., & Castro, J. G. D. (2000). Qualidade nutricional de três espécies de clorofícias cultivadas em laboratório. Acta Amazonica, 30(1), 39-47. https://doi.org/10.1590/1809-43922000301047 DOI: https://doi.org/10.1590/1809-43922000301047

Kollah, B., Patra, A. K., & Mohanty, S. R. (2016). Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment, and global climate change. Environmental Science and Pollution Research, 23(5), 4358-4369. https://doi.org/10.1007/s11356-015-5857-9. DOI: https://doi.org/10.1007/s11356-015-5857-9

Indhumathi, P., Syed, S. P. S., & Shoba, U. S. (2014). A method for production and characterization of biodiesel from green micro algae. International Journal of Bio-Science and Bio-Technology, 6(5), 2233-7849. http://dx.doi.org/10.14257/ijbsbt.2014.6.5.11 DOI: https://doi.org/10.14257/ijbsbt.2014.6.5.11

Lopez, D. E, Goodwin J. G., Bruce, D. A., & Lotero, E. (2005). Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A: General, 295(2), 1873-3875. https://doi.org/10.1016/j.apcata.2005.07.055 DOI: https://doi.org/10.1016/j.apcata.2005.07.055

Maestrin, A. P. J., Neri, C. R., Oliveira, K. T., Serra, O. A., & Iamamoto, Y. (2009). Extração e purificação de clorofila a, da alga Spirulina maxima: um experiment para os cursos de química. Química Nova, 32(6), 1670-1672. https://doi.org/10.1590/S0100-40422009000600054 DOI: https://doi.org/10.1590/S0100-40422009000600054

Menezes-Filho, A., Ventura, M., Batista-Ventura, H., Castro, C., Triches, C., Porfiro, C., Guimarães, J., Teixeira, M., Soares, F., & Taques, A. (2021). Phytochemical study and in vitro biological activities of Chlorella vulgaris, Chlorella pyrenoidosa and Chlorella minutissima extracs. Avances en Química, 16(3), 71-79. http://erevistas.saber.ula.ve/index.php/avancesenquimica/article/view/17663/21921928892

Nautiyal., P., Subramanian, K. A., & Dastidar, M. G. (2014). Production and characterization of biodiesel from algae.

Fuel Processing Technology, 120, 0378-3820. https://doi.org/10.1016/j.fuproc.2013.12.003 DOI: https://doi.org/10.1016/j.fuproc.2013.12.003

Swanson, K. J., Madden, M. C., & Ghio, A. J. (2007). Biodiesel exhaust: the need for health effects research. Environ Health Perspect, 115(4): 496-499. https://doi.org/10.1289/ehp.9631 DOI: https://doi.org/10.1289/ehp.9631

Subramanian, K. A., Singal, S. K., Saxena, M., & Singhal, S. (2005). Utilization of liquid biofuels in automotive

diesel engines: An Indian perspective. Biomass and Bioenergy, 29(1), 0378-3820. https://doi.org/10.1016/j.biombioe.2005.02.001 DOI: https://doi.org/10.1016/j.biombioe.2005.02.001

Sivalve, B., Bernet, N., Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 24(4), 409-416. DOI: https://doi.org/10.1016/j.biotechadv.2009.03.001

Sumanta, N., Choudhury, I. H., Jaishee, N., & Roy, S. (2014). Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Research Journal of Chemical Sciences, 4(9), 63-69. https://doi.org/10.1055/s-0033-1340072. DOI: https://doi.org/10.4103/2141-9248.131725

Tsarpali, M., Arora, N., Kuhn, J. N., & Philippidis, G. P. (2021). Lipid-extracted algae as a source of biomaterials for algae biorefineries. Algal Research, 57. DOI: https://doi.org/10.1016/j.algal.2021.102354

Ullah, K., Ahmad, M., Sharma, V. K., Lu, P., Harvey, A., Zafar, M., Sultana, S., & Anyanwu, C. N. (2014). Algal biomass as a global source of transport fuels: overview and development perspectives. Progress in Natural Science: Materials International, 24, 329-339. https://doi.org/10.1016/j.pnsc.2014.06.008 DOI: https://doi.org/10.1016/j.pnsc.2014.06.008

Van, G. J. (2005). Biodiesel processing and production. Fuel Processing Technology, 86, 1097-1107. https://doi.org/10.1016/j.fuproc.2004.11.005 DOI: https://doi.org/10.1016/j.fuproc.2004.11.005

Zhu, C. J., & Lee, Y. K. (1997). Determination of biomass dry weight of marine microalgae. Journal of Applied Phycology, 9, 189-194. https://doi.org/10.1023/A:1007914806640 DOI: https://doi.org/10.1023/A:1007914806640

Downloads

Published

2023-03-01

How to Cite

Sharma, P., Biswas, P., Tamrakar, S., & Choudhary, Y. (2023). Biofuel production, study & characterisation from macro-algae (Azolla pinnata). Brazilian Journal of Science, 2(3), 75–81. https://doi.org/10.14295/bjs.v2i3.289

Issue

Section

Environmental Sciences